Electronics-Related.com

Analog-to-Digital Confusion: Pitfalls of Driving an ADC

Jason Sachs November 19, 20118 comments

Imagine the following scenario:You're a successful engineer (sounds nice, doesn't it!) working on a project with three or four circuit boards. More than even you can handle, so you give one of them over to your coworker Wayne to design. Wayne graduated two years ago from college. He's smart, he's a quick learner, and he's really fast at designing schematics and laying out circuit boards. It's just that sometimes he takes some shortcuts... but in this case the circuit board is just something...


Complexity in Consumer Electronics Considered Harmful

Jason Sachs October 1, 20111 comment

I recently returned from a visit to my grandmother, who lives in an assisted living community, and got to observe both her and my frustration first-hand with a new TV. This was a Vizio flatscreen TV that was fairly easy to set up, and the picture quality was good. But here's what the remote control looks like:

You will note:

  • the small lettering (the number buttons are just under 1/4 inch in diameter)
  • a typeface chosen for marketing purposes (matching Vizio's "futuristic" corporate...

Which MOSFET topology?

Jason Sachs September 1, 20119 comments

A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:

From left to right, these are:

High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...

Thermistor signal conditioning: Dos and Don'ts, Tips and Tricks

Jason Sachs June 15, 201118 comments

In an earlier blog entry,  I mentioned this circuit for thermistor signal conditioning:

It is worth a little more explanation on thermistor signal conditioning; it's something that's often done poorly, whereas it's among the easiest applications for signal conditioning.

The basic premise here is that there are two resistors in a voltage divider: Rth is the thermistor, and Rref is a reference resistor. Here Rref is either R3 alone, or R3 || R4, depending on the gain...


Real-time clocks: Does anybody really know what time it is?

Jason Sachs May 29, 20118 comments

We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...


Byte and Switch (Part 2)

Jason Sachs May 7, 20118 comments

In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:

We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...


Byte and Switch (Part 1)

Jason Sachs April 26, 201114 comments

Imagine for a minute you have an electromagnet, and a microcontroller, and you want to use the microcontroller to turn the electromagnet on and off. Sounds pretty typical, right?We ask this question on our interviews of entry-level electrical engineers: what do you put between the microcontroller and the electromagnet?We used to think this kind of question was too easy, but there are a surprising number of subtleties here (and maybe a surprising number of job candidates that were missing...


Isolated Sigma-Delta Modulators, Rah Rah Rah!

Jason Sachs April 25, 2013

I recently faced a little "asterisk" problem, which looks like it can be solved with some interesting ICs. 

I needed to plan out some test instrumentation to capture voltage and current information over a short period of time. Nothing too fancy, 10 or 20kHz sampling rate, about a half-dozen channels sampled simultaneously or near simultaneously, for maybe 5 or 10 seconds.

Here's the "asterisk": Oh, by the way, because the system in question was tied to the AC mains, I needed some...


Voltage Drops Are Falling on My Head: Operating Points, Linearization, Temperature Coefficients, and Thermal Runaway

Jason Sachs January 19, 2015

Today’s topic was originally going to be called “Small Changes Caused by Various Things”, because I couldn’t think of a better title. Then I changed the title. This one’s not much better, though. Sorry.

What I had in mind was the Shockley diode equation and some other vaguely related subjects.

My Teachers Lied to Me

My introductory circuits class in college included a section about diodes and transistors.

The ideal diode equation is...


Short Takes (EE Shanty): What shall we do with a zero-ohm resistor?

Jason Sachs October 19, 20132 comments

In circuit board design you often need flexibility. It can cost hundreds or thousands of dollars to respin a circuit board, so I need flexibility for two main reasons:

  • sometimes it's important to be able to use one circuit board design to serve more than one purpose
  • risk reduction: I want to give myself the option to add in or leave out certain things when I'm not 100% sure I'll need them.

And so we have jumpers and DIP switches and zero-ohm resistors:

Jumpers and...


Hot Fun in the Silicon: Thermal Testing with Power Semiconductors

Jason Sachs April 20, 2012

Here's a trick that is useful the next time you do thermal testing with your MOSFETs or IGBTs.

Thermal testing?!

Yes, that's right. It's important to make sure your power transistors don't overheat. In the datasheet, you will find some information that you can use to estimate how hot the junction inside the IC will get.

Let's look at an example. Here's a page from the IRF7739 DirectFET datasheet. I like this datasheet because it has almost all the thermal stuff on one page,...


Efficiency Through the Looking-Glass

Jason Sachs December 8, 20134 comments

If you've ever designed or purchased a power supply, chances are you have had to work with efficiency calculations. I can remember in my beginning electronic circuits course in college, in the last lecture when the professor was talking about switching power converters, and saying how all of a sudden you could take a linear regulator that was 40% efficient and turn it into a switching regulator that was 80% efficient. I think that was the nail in the coffin for any plans I had to pursue a...


April is Oscilloscope Month: In Which We Discover Agilent Offers Us a Happy Deal and a Sad Name

Jason Sachs April 19, 2014

Last month I wrote that March is Oscilloscope Month, because Agilent had a deal on the MSOX2000 and MSOX3000 series scopes offering higher bandwidth at lower prices. I got an MSOX3034 oscilloscope and saved my company $3500! (Or rather, I didn't save them anything, but I got a 350MHz scope at a 200MHz price.)

The scope included a free 30-day trial for each of the application software modules. I used my 30-day trial for the serial decode + triggering module, to help debug some UART...


Modeling Gate Drive Diodes

Jason Sachs March 11, 20241 comment

This is a short article about how to analyze the diode in some gate drive circuits when figuring out turn-off characteristics --- specifically, determining the relationship between gate drive current and gate voltage during turn-off of a power transistor.